Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.872
Filtrar
1.
Sci Rep ; 14(1): 7624, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561345

RESUMO

It is known that titanium (Ti) implant surfaces exhibit poor antibacterial properties and osteogenesis. In this study, chitosan particles loaded with aspirin, amoxicillin or aspirin + amoxicillin were synthesized and coated onto implant surfaces. In addition to analysing the surface characteristics of the modified Ti surfaces, the effects of the modified Ti surfaces on the adhesion and viability of rat bone marrow-derived stem cells (rBMSCs) were evaluated. The metabolic activities of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) biofilms on the modified Ti surfaces were also measured in vitro. Moreover, S. aureus was tested for its antibacterial effect by coating it in vivo. Using water as the droplet medium, the contact angles of the modified Ti surfaces increased from 44.12 ± 1.75° to 58.37 ± 4.15°. In comparison to those of the other groups tested, significant increases in rBMSC adhesion and proliferation were observed in the presence of aspirin + amoxicillin-loaded microspheres, whereas a significant reduction in the metabolic level of biofilms was observed in the presence of aspirin + amoxicillin-loaded microspheres both in vitro and in vivo. Aspirin and amoxicillin could be used in combination to coat implant surfaces to mitigate bacterial activities and promote osteogenesis.


Assuntos
Amoxicilina , Quitosana , Indóis , Polímeros , Ratos , Animais , Amoxicilina/farmacologia , Aspirina/farmacologia , Titânio/farmacologia , Quitosana/farmacologia , Osteogênese , Staphylococcus aureus , Escherichia coli , Antibacterianos/farmacologia , Propriedades de Superfície , Materiais Revestidos Biocompatíveis/farmacologia
2.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 42(2): 172-180, 2024 Apr 01.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38597077

RESUMO

OBJECTIVES: The effect of TiO2 nanotube morphology on the differentiation potency of senescent periodontal ligament stem cells was investigated. METHODS: Two types of titanium sheets with TiO2 nanotube morphology (20V-NT and 70V-NT) were prepared via anodic oxidation at 20 and 70 V separately, and their surface morphology was observed. Young periodontal ligament stem cells were cultivated in an osteogenic induction medium, and the most effective surface morphology in promoting osteogenic differentiation was selected. RO3306 and Nutlin-3a were used to induce the aging of young periodontal ligament stem cells, and senescent periodontal ligament stem cells were obtained. The osteogenic differentiation of senescent periodontal ligament stem cells was induced, and the effect of surface morphology on osteogenic differentiation was observed. RESULTS: Nanotube morphology was achieved on the surfaces of titanium sheets through anodic oxidation, and the diameters of the nanotubes increased with voltage. A significant difference in the effect of nanotube morphology was found among nanotubes with different diameters in the young periodontal ligament stem cells. The surface nanotube morphology of 20V-NT had a more significant effect that promoted osteogenic differentiation. Compared with a smooth titanium sheet, the surface nanotube morphology of 20V-NT increased the number of alkaline phosphatase-positive senescent periodontal ligament stem cells and promoted calcium deposition and the expression of osteogenic marker genes Runt-related transcription factor 2, osteopontin, and osteocalcin. CONCLUSIONS: A special nanotube morphology enhances the differentiation ability of senescent periodontal ligament stem cells, provides an effective method for periodontal regeneration, and further improves the performance of implants.


Assuntos
Implantes Dentários , Osteogênese , Ligamento Periodontal/metabolismo , Titânio/metabolismo , Titânio/farmacologia , Células-Tronco , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Fosfatase Alcalina/farmacologia
3.
Molecules ; 29(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38611885

RESUMO

Mesoporous titanium nanoparticles (MTN) have always been a concern and are considered to have great potential for overcoming antibiotic-resistant bacteria. In our study, MTN modified with functionalized UV-responsive ethylene imine polymer (PEI) was synthesized. The characterization of all products was performed by different analyses, including SEM, TEM, FT-IR, TGA, XRD, XPS, and N2 adsorption-desorption isotherms. The typical antibacterial drug berberine hydrochloride (BH) was encapsulated in MTN-PEI. The process exhibited a high drug loading capacity (22.71 ± 1.12%) and encapsulation rate (46.56 ± 0.52%) due to its high specific surface area of 238.43 m2/g. Moreover, UV-controlled drug release was achieved by utilizing the photocatalytic performance of MTN. The antibacterial effect of BH@MTN-PEI was investigated, which showed that it could be controlled to release BH and achieve a corresponding antibacterial effect by UV illumination for different lengths of time, with bacterial lethality reaching 37.76% after only 8 min of irradiation. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the nanoparticles have also been studied. The MIC of BH@MTN-PEI was confirmed as 1 mg/mL against Escherichia coli (E. coli), at which the growth of bacteria was completely inhibited during 24 h and the concentration of 5 mg/mL for BH@MTN-PEI was regarded as MBC against E. coli. Although this proof-of-concept study is far from a real-life application, it provides a possible route to the discovery and application of antimicrobial drugs.


Assuntos
Berberina , Nanopartículas , Berberina/farmacologia , Liberação Controlada de Fármacos , Escherichia coli , Espectroscopia de Infravermelho com Transformada de Fourier , Titânio/farmacologia , Antibacterianos/farmacologia
4.
Shanghai Kou Qiang Yi Xue ; 33(1): 6-12, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38583018

RESUMO

PURPOSE: Bioactive magnesium ions were successfully incorporated into the nanoporous titanium base coating by micro-arc oxidation(MAO), and its physical properties and osteogenic effects were explored. METHODS: Non-magnesium-containing and magnesium-containing titanium porous titanium coatings(MAO, MAO-mg) were prepared by changing the composition of MAO electrolyte and controlling the doping of magnesium in porous titanium coatings. The samples were characterized by scanning electron microscope (SEM), roughness, contact angle and energy dispersive X-ray spectrometer (EDS). Mg2+ release ability of magnesium-doped nanoporous titanium coatings was determined by inductively coupled plasma/optical emission spectrometer(ICP-OES). The structure of the cytoskeleton was determined by live/dead double staining, CCK-8 detection of material proliferation-toxicity, and staining of ß-actin using FITC-phalloidin. The effects of the coating on osteogenic differentiation in vitro were determined by alizarin red (ARS), alkaline phosphatase (ALP) staining and real-time polymerase chain reaction (qRT-PCR). SPSS 25.0 software package was used for statistical analysis. RESULTS: The MAO electrolyte with magnesium ions did not change the surface characteristics of the porous titanium coating. Each group prepared by MAO had similar microporous structure(P>0.05). There was no significant difference in surface roughness and contact angle between MAO treatment group (MAO, MAO-mg)(P>0.05), but significantly higher than that of Ti group (P<0.05). With the passage of cell culture time, MAO-mg group promoted cell proliferation (P<0.05). MAO-mg group was significantly higher than other groups in ALP and ARS staining. The expression of Runx2 mRNA (P<0.05), ALP(P<0.05) and osteocalcin OCN(P<0.05) in MAO-mg group was significantly higher than that in Ti and MAO groups. CONCLUSIONS: MAO successfully prepared magnesium-containing nanoporous titanium coating, and showed a significant role in promoting osteogenic differentiation.


Assuntos
Nanoporos , Titânio , Titânio/farmacologia , Magnésio/química , Magnésio/farmacologia , Osteogênese/genética , Eletrólitos/farmacologia , Íons/farmacologia , Propriedades de Superfície , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química
5.
Sci Rep ; 14(1): 7940, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575777

RESUMO

Bacterial infections triggered by patient or healthcare worker contact with surfaces are a major cause of medically acquired infections. By controlling the kinetics of tetrabutyl titanate hydrolysis and condensation during the sol-gel process, it is possible to regulate the content of Ti3+ and oxygen vacancies (OVs) in TiO2, and adjust the associated visible light-induced photocatalytic performance and anti-bacterial adhesion properties. The results have shown that the Ti3+ content in TiO2 was 9.87% at the calcination temperature of the reaction system was 300 °C and pH was 1.0, corresponding to optimal photocatalytic and hydrophilic properties. The formation of a hydrated layer on the superhydrophilic surface provided resistance to bacterial adhesion, preventing cross-contamination on high-touch surfaces. The excellent photocatalytic self-cleaning performance and anti-bacterial adhesion properties can be attributed to synergistic effects associated with the high specific surface area of TiO2 nanoparticles, the mesoporous structure, and the presence of Ti3+ and OVs. The formation of superhydrophilic self-cleaning surfaces under visible light can serve as the basis for the development of a new class of anti-bacterial adhesion materials.


Assuntos
Nanopartículas , Titânio , Humanos , Titânio/farmacologia , Titânio/química , Catálise , Propriedades de Superfície , Luz , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas/química
6.
Ecotoxicol Environ Saf ; 273: 116166, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38430577

RESUMO

Nanotechnology is one of the most recent approaches employed to defend plants against both biotic and abiotic stress including heavy metals such as Cadmium (Cd). In this study, we evaluated the effects of titanium dioxide (TiO2) nanoparticles (TiO2 NPs) in alleviating Cd stress in Tetrastigma hemsleyanum Diels et Gilg. Compared with Cd treatment, TiO2 NPs decreased leaf Cd concentration, restored Cd exposure-related reduction in the biomass to about 69% of control and decreased activities of antioxidative enzymes. Integrative analysis of transcriptome and metabolome revealed 325 differentially expressed genes associated with TiO2 NP treatment, most of which were enriched in biosynthesis of secondary metabolites. Among them, the flavonoid and phenylpropanoid biosynthetic pathways were significantly regulated to improve the growth of T. hemsleyanum when treated with Cd. In the KEGG Markup Language (KGML) network analysis, we found some commonly regulated pathways between Cd and Cd+TiO2 NP treatment, including phenylpropanoid biosynthesis, ABC transporters, and isoflavonoid biosynthesis, indicating their potential core network positions in controlling T. hemsleyanum response to Cd stress. Overall, our findings revealed a complex response system for tolerating Cd, encompassing the transportation, reactive oxygen species scavenging, regulation of gene expression, and metabolite accumulation in T. hemsleyanum. Our results indicate that TiO2 NP can be used to reduce Cd toxicity in T. hemsleyanum.


Assuntos
Antioxidantes , Nanopartículas , Cádmio/toxicidade , Titânio/farmacologia
7.
J Colloid Interface Sci ; 665: 389-398, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38537587

RESUMO

Photothermal therapy (PTT) has attracted much attention due to its less invasive, controllable and highly effective nature. However, PTT also suffers from intrinsic cancer resistance mediated by cell survival pathways. These survival pathways are regulated by a variety of proteins, among which heat shock protein (HSP) triggers thermotolerance and protects tumor cells from hyperthermia-induced apoptosis. Confronted by this challenge, we propose and validate here a novel MXene-based HSP-inhibited mild photothermal platform, which significantly enhances the sensitivity of tumor cells to heat-induced stress and thus improves the PPT efficacy. The Ti3C2@Qu nanocomposites are constructed by utilizing the high photothermal conversion ability of Ti3C2 nanosheets in combination with quercetin (Qu) as an inhibitor of HSP70. Qu molecules are loaded onto the nanoplatform in a pH-sensitive controlled release manner. The acidic environment of the tumor causes the burst-release of Qu molecules, which deplete the level of heat shock protein 70 (HSP70) in tumor cells and leave the tumor cells out from the protection of the heat-resistant survival pathway in advance, thus sensitizing the hyperthermia efficacy. The nanostructure, photothermal properties, pH-responsive controlled release, synergistic photothermal ablation of tumor cells in vitro and in vivo, and hyperthermia effect on subcellular structures of the Ti3C2@Qu nanocomposites were systematically investigated.


Assuntos
Hipertermia Induzida , Nanocompostos , Nanopartículas , Neoplasias , Nitritos , Elementos de Transição , Humanos , Preparações de Ação Retardada , Titânio/farmacologia , Fototerapia , Neoplasias/terapia , Linhagem Celular Tumoral , Nanopartículas/química
8.
Chemosphere ; 355: 141777, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38527634

RESUMO

With the wide use of nanomaterials in daily life, nano-titanium dioxide (nano-TiO2) presents potential ecological risks to marine ecosystems, which can be exacerbated by ocean warming (OW). However, most previous studies have only centered around waterborne exposure, while there is a scarcity of studies concentrating on the impact of trophic transfer exposure on organisms. We investigated the differences in toxic effects of 100 µg/L nano-TiO2 on mussels via two pathways (waterborne and foodborne) under normal (24 °C) and warming (28 °C) conditions. Single nano-TiO2 exposure (waterborne and foodborne) elevated the superoxide dismutase (SOD) and catalase (CAT) activities as well as the content of glutathione (GSH), indicating activated antioxidatant response in the intestine. However, depressed antioxidant enzymes and accumulated peroxide products (LPO and protein carbonyl content, PCC) demonstrated that warming in combination with nano-TiO2 broke the prooxidant-antioxidant homeostasis of mussels. Our findings also indicated that nano-TiO2 and high temperature exhibited adverse impacts on amylase (AMS), trypsin (PS), and trehalase (THL). Additionally, activated immune function (lysozyme) comes at the cost of energy expenditure of protein (decreased protein concentration). The hydrodynamic diameter of nano-TiO2 at 24 °C (1693-2261 nm) was lower than that at 28 °C (2666-3086 nm). Bioaccumulation results (range from 0.022 to 0.432 µg/g) suggested that foodborne induced higher Ti contents in intestine than waterborne. In general, the combined effects of nano-TiO2 and warming demonstrated a more pronounced extent of interactive effects and severe damage to antioxidant, digestive, and immune parameters in mussel intestine. The toxicological impact of nano-TiO2 was intensified through trophic transfer. The toxic effects of nano-TiO2 are non-negligible and can be exerted together through both water- and foodborne exposure routes, which deserves further investigation.


Assuntos
Mytilus , Poluentes Químicos da Água , Animais , Mytilus/metabolismo , Antioxidantes/metabolismo , Água/metabolismo , Ecossistema , Carbonilação Proteica , Temperatura , Intestinos , Poluentes Químicos da Água/metabolismo , Titânio/farmacologia
9.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542241

RESUMO

As the population ages, the number of patients undergoing total hip arthroplasty (THA) and total knee arthroplasty (TKA) continues to increase. Infections after primary arthroplasty are rare but have high rates of morbidity and mortality, as well as enormous financial implications for healthcare systems. Numerous methods including the use of superhydrophobic coatings, the incorporation of antibacterial agents, and the application of topographical treatments have been developed to reduce bacterial attachment to medical devices. However, most of these methods require complex manufacturing processes. Thus, the main purpose of this study was to apply biocoatings to titanium (Ti) surfaces to increase their infection resistance and osteoconductivity via simple processes, without organic reagents. We modified titanium surfaces with a combination of aminomalononitrile (AMN) and an antibiotic-loaded mesoporous bioactive glass (MBG) and evaluated both the antibacterial effects of the coating layer and its effect on osteoblast proliferation and differentiation. The properties of the modified surface, such as the hydrophilicity, roughness, and surface morphology, were characterized via contact angle measurements, atomic force microscopy, and scanning electron microscopy. The cell proliferation reagent WST-1 assay and the alkaline phosphatase (ALP) assay were used to determine the degrees of adhesion and differentiation, respectively, of the MG-63 osteoblast-like cells on the surface. Antimicrobial activity was evaluated by examining the survival rate and inhibition zone of Escherichia coli (E. coli). The AMN coating layer reduced the water contact angle (WCA) of the titanium surface from 87° ± 2.5° to 53° ± 2.3° and this change was retained even after immersion in deionized water for five weeks, demonstrating the stability of the AMN coating. Compared with nontreated titanium and polydopamine (PDA) coating layers, the AMN surface coating increased MG-63 cell attachment, spreading, and early ALP expression; reduced E. coli adhesion; and increased the percentage of dead bacteria. In addition, the AMN coating served as an adhesion layer for the subsequent deposition of MBG-containing antibiotic nanoparticles. The synergistic effects of the AMN layer and antibiotics released from the MBG resulted in an obvious E. coli inhibition zone that was not observed in the nontreated titanium group.


Assuntos
Escherichia coli , Titânio , Humanos , Titânio/farmacologia , Titânio/química , Propriedades de Superfície , Antibacterianos/farmacologia , Antibacterianos/química , Interações Hidrofóbicas e Hidrofílicas , Bactérias , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química , Osteoblastos
10.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38542358

RESUMO

The clinical success of dental titanium implants is profoundly linked to implant stability and osseointegration, which comprises pre-osteoblast proliferation, osteogenic differentiation, and extracellular mineralization. Because of the bio-inert nature of titanium, surface processing using subtractive or additive methods enhances osseointegration ability but limits the benefit due to accompanying surface contamination. By contrast, laser processing methods increase the roughness of the implant surface without contamination. However, the effects of laser-mediated distinct surface structures on the osteointegration level of osteoblasts are controversial. The role of a titanium surface with a laser-mediated microchannel structure in pre-osteoblast maturation remains unclear. This study aimed to elucidate the effect of laser-produced microchannels on pre-osteoblast maturation. Pre-osteoblast human embryonic palatal mesenchymal cells were seeded on a titanium plate treated with grinding (G), sandblasting with large grit and acid etching (SLA), or laser irradiation (L) for 3-18 days. The proliferation and morphology of pre-osteoblasts were evaluated using a Trypan Blue dye exclusion test and fluorescence microscopy. The mRNA expression, protein expression, and protein secretion of osteogenic differentiation markers in pre-osteoblasts were evaluated using reverse transcriptase quantitative polymerase chain reaction, a Western blot assay, and a multiplex assay, respectively. The extracellular calcium precipitation of pre-osteoblast was measured using Alizarin red S staining. Compared to G- and SLA-treated titanium surfaces, the laser-produced microchannel surfaces enhanced pre-osteoblast proliferation, the expression/secretion of osteogenic differentiation markers, and extracellular calcium precipitation. Laser-treated titanium implants may enhance the pre-osteoblast maturation process and provide extra benefits in clinical application.


Assuntos
Cálcio , Titânio , Humanos , Titânio/farmacologia , Titânio/química , Propriedades de Superfície , Cálcio/farmacologia , Osteogênese , Lasers , Diferenciação Celular , Antígenos de Diferenciação , Proliferação de Células , Osteoblastos , Osseointegração
11.
Iran Biomed J ; 28(1): 38-45, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38477251

RESUMO

Background: The surface properties of dental and orthopedic implants are directly related to their osseointegration rate. Coating and/or modifying the implant surface might reduce the time of healing. In this study, we aimed to examine the effects of a hybrid surface consisting of a brushite surface coating and cross-linked water-soluble eggshell membrane protein on the osseointegration of titanium (Ti) screws under in vivo conditions. Methods: Twenty Ti alloy screws were implanted monocortically in anteromedial regions of New Zealand rabbit tibiae. Ten screws were untreated and used as controls. The remaining 10 screws were coated with calcium phosphate and following cross-linked with ostrich eggshell membrane protein. All rabbits were sacrificed six weeks after the surgery. Peri-screw tissues were evaluated by micro-computed tomography (µ-CT), histological and histomorphometrical methods. Results: The µ-CT assessments indicated that the experimental group had significantly higher mean bone surface area (BSA) and trabeculae number (TbN) than those of the control group (p ˂ 0.05). Bone surface area (BV), trabecular separation (TbSp), trabecular thickness (TbTh), and bone mineral density (BMD) scores of the control and experimental groups were quite similar (p > 0.05). The vascularization score of the experimental group was significantly higher than the control group (4.29 vs. 0.92%). No sign of the graft-versus-host reaction was observed. Conclusion: Our findings reveal that coating Ti alloy implants with calcium phosphate cross-linked with ostrich eggshell membrane protein increases the osseointegration of Ti alloy screws by increasing the bone surface area, number of trabeculae and vascularization in the implant site.


Assuntos
Osseointegração , Titânio , Coelhos , Animais , Titânio/farmacologia , Água , Ligas/farmacologia , Microtomografia por Raio-X , Casca de Ovo , Materiais Revestidos Biocompatíveis/farmacologia , Fosfatos de Cálcio/farmacologia , Proteínas de Membrana , Propriedades de Superfície
12.
Aquat Toxicol ; 270: 106904, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513426

RESUMO

Due to their potential release into the environment, the ecotoxicity of Ti3C2Tx (MXene) nanomaterials is a growing concern. Unfortunately, little is known about the toxic effects and mechanisms through which Ti3C2Tx induces toxicity in aquatic organisms. The aim of this study is thus to investigate the toxic effects and mechanisms of Daphnia magna upon exposure to Ti3C2Tx with different sheet sizes (100 nm [Ti3C2Tx-100] and 500 nm [Ti3C2Tx-500]) by employing conventional toxicology and metabolomics analysis. The results showed that exposure to both Ti3C2Tx-100 and Ti3C2Tx-500 at 10 µg/mL resulted in a significant accumulation of Ti3C2Tx in D. magna, but no effects on the mortality or growth of D. magna were observed. However, the metabolomics results revealed that Ti3C2Tx-100 and Ti3C2Tx-500 induced significant changes in up to 265 and 191 differential metabolites in D. magna, respectively, of which 116 metabolites were common for both. Ti3C2Tx-100-induced metabolites were mainly enriched in phospholipid, pyrimidine, tryptophan, and arginine metabolism, whereas Ti3C2Tx-500-induced metabolites were mainly enriched in the glycerol-ester, tryptophan, and glyoxylate metabolism and the pentose phosphate pathway. These results indicated that the toxicity of Ti3C2Tx to D. magna has a size-dependent effect at the metabolic level, and both sheet sizes of Ti3C2Tx can lead to metabolic disturbances in D. magna by interfering with lipid and amino acid metabolism pathways.


Assuntos
60496 , Nitritos , Elementos de Transição , Poluentes Químicos da Água , Animais , Daphnia , Titânio/farmacologia , Triptofano/metabolismo , Triptofano/farmacologia , Poluentes Químicos da Água/toxicidade
13.
J Nanobiotechnology ; 22(1): 123, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38504272

RESUMO

BACKGROUND: Photodynamic therapy (PDT) efficacy of bismuth sulfide (Bi2S3) semiconductor has been severely restricted by its electron-hole pairs (e--h+) separation inefficiency and oxygen (O2) deficiency in tumors, which greatly hinders reactive oxygen species (ROS) generation and further clinical application of Bi2S3 nanoparticles (NPs) in biomedicine. RESULTS: Herein, novel Bi2S3/titanium carbide (Ti3C2) two-dimensional nano-heterostructures (NHs) are designed to realize multimode PDT of synchronous O2 self-supply and ROS generation combined with highly efficient photothermal tumor elimination for hypoxic tumor therapy. Bi2S3/Ti3C2 NHs were synthesized via the in situ synthesis method starting from Ti3C2 nanosheets (NSs), a classical type of MXene nanostructure. Compared to simple Bi2S3 NPs, Bi2S3/Ti3C2 NHs significantly extend the absorption to the near-infrared (NIR) region and enhance the photocatalytic activity owing to the improved photogenerated carrier separation, where the hole on the valence band (VB) of Bi2S3 can react with water to supply O2 for the electron on the Ti3C2 NSs to generate ·O2- and ·OH through electron transfer. Furthermore, they also achieve 1O2 generation through energy transfer due to O2 self-supply. After the modification of triphenylphosphium bromide (TPP) on Bi2S3/Ti3C2 NHs, systematic in vitro and in vivo evaluations were conducted, revealing that the synergistic-therapeutic outcome of this nanoplatform enables complete eradication of the U251 tumors without recurrence by NIR laser irradiation, and it can be used for computed tomography (CT) imaging because of the strong X-ray attenuation ability. CONCLUSION: This work expands the phototherapeutic effect of Bi2S3-based nanoplatforms, providing a new strategy for hypoxic tumor theranostics.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Brometos/uso terapêutico , Terapia Fototérmica , Espécies Reativas de Oxigênio , Titânio/farmacologia , Neoplasias/tratamento farmacológico , Oxigênio , Hipóxia/tratamento farmacológico , Raios Infravermelhos , Linhagem Celular Tumoral
14.
J Mater Chem B ; 12(12): 3006-3014, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38451210

RESUMO

Inorganic biomaterials are used in various orthopedic and dental implants. Nevertheless, they cause clinical issues such as loosening of implants and patient morbidity. Therefore, inspired by mussel adhesive proteins, we aimed to design an adhesive and dimer-forming highly active bone morphogenetic protein-2 (BMP-2) using bioorthogonal chemistry, in which recombinant DNA technology was combined with enzymatic modifications, to achieve long-term osseointegration with titanium. The prepared BMP-2 exhibited substantially higher binding activity than wild-type BMP-2, while the adhered BMP-2 was more active than soluble BMP-2. Therefore, the adhesive BMP-2 was immobilized onto titanium wires and screws and implanted into rat bones, and long-term osteogenesis was evaluated. Adhesive BMP-2 promoted the mechanical binding of titanium to bones, enabling efficient bone regeneration and effective stabilization of implants. Thus, such adhesive biosignaling proteins can be used in regenerative medicine.


Assuntos
Regeneração Óssea , Titânio , Ratos , Animais , Humanos , Titânio/farmacologia , Próteses e Implantes , Osteogênese , Osseointegração
15.
ACS Appl Mater Interfaces ; 16(11): 13622-13639, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38466038

RESUMO

The design of implantable biomaterials involves precise tuning of surface features because the early cellular fate on such engineered surfaces is highly influenced by many physicochemical factors [roughness, hydrophilicity, reactive oxygen species (ROS) responsiveness, etc.]. Herein, to enhance soft tissue integration for successful implantation, Ti substrates decorated with uniform layers of nanoceria (Ce), called Ti@Ce, were optimally developed by a simple and cost-effective in situ immersion coating technique. The characterization of Ti@Ce shows a uniform Ce distribution with enhanced roughness (∼3-fold increase) and hydrophilicity (∼4-fold increase) and adopted ROS-scavenging capacity by nanoceria coating. When human gingival fibroblasts were seeded on Ti@Ce under oxidative stress conditions, Ti@Ce supported cellular adhesion, spreading, and survivability by its cellular ROS-scavenging capacity. Mechanistically, the unique nanocoating resulted in higher expression of amphiphysin (a nanotopology sensor), paxillin (a focal adhesion protein), and cell adhesive proteins (collagen-1 and fibronectin). Ti@Ce also led to global chromatin condensation by decreasing histone 3 acetylation as an early differentiation feature. Transcriptome analysis by RNA sequencing confirmed the chromatin remodeling, antiapoptosis, antioxidant, cell adhesion, and TGF-ß signaling-related gene signatures in Ti@Ce. As key fibroblast transcription (co)factors, Ti@Ce promotes serum response factor and MRTF-α nucleus localization. Considering all of this, it is proposed that the surface engineering approach using Ce could improve the biological properties of Ti implants, supporting their functioning at soft tissue interfaces and utilization as a bioactive implant for clinical conditions such as peri-implantitis.


Assuntos
Cério , Fibroblastos , Titânio , Humanos , Espécies Reativas de Oxigênio/metabolismo , Titânio/farmacologia , Titânio/química , Células Cultivadas , Propriedades de Superfície , Adesão Celular/fisiologia , Fibroblastos/metabolismo
16.
J Biomed Mater Res B Appl Biomater ; 112(4): e35403, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520706

RESUMO

For decades, titanium implants have shown impressive advantages in bone repair. However, the preparation of implants with excellent antimicrobial properties as well as better osseointegration ability remains difficult for clinical application. In this study, black phosphorus nanosheets (BPNSs) were doped into hydroxyapatite (HA) coatings using electrophoretic deposition. The coatings' surface morphology, roughness, water contact angle, photothermal properties, and antibacterial properties were investigated. The BP/HA coating exhibited a surface roughness of 59.1 nm, providing an ideal substrate for cell attachment and growth. The water contact angle on the BP/HA coating was measured to be approximately 8.55°, indicating its hydrophilic nature. The BPNSs demonstrated efficient photothermal conversion, with a temperature increase of 42.2°C under laser irradiation. The BP/HA composite coating exhibited a significant reduction in bacterial growth, with inhibition rates of 95.6% and 96.1% against Staphylococcus aureus and Escherichia coli. In addition, the cytocompatibility of the composite coating was evaluated by cell adhesion, CCK8 and AM/PI staining; the effect of the composite coating in promoting angiogenesis was assessed by scratch assay, transwell assay, and protein blotting; and the osteoinductivity of the composite coating was evaluated by alkaline phosphatase assay, alizarin red staining, and Western blot. The results showed that the BP/HA composite coating exhibited superior performance in promoting biological functions such as cell proliferation and adhesion, antibacterial activity, osteogenic differentiation, and angiogenesis, and had potential applications in vascularized bone regeneration.


Assuntos
Durapatita , Titânio , Durapatita/farmacologia , Durapatita/química , Titânio/farmacologia , Titânio/química , Osseointegração , Osteogênese , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química , Antibacterianos/farmacologia , Água/farmacologia , Propriedades de Superfície
17.
Nanoscale ; 16(14): 7167-7184, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38504613

RESUMO

Antibacterial properties and osteogenic activity are considered as two crucial factors for the initial healing and long-term survivability of orthopedic implants. For decades, various drug-loaded implants to enhance biological activities have been investigated extensively. More importantly, to control the drug release timing is equally significant due to the sequential biological processes after implantation. Hence, developing a staged regulation system on the titanium surface is practically significant. Here, we prepared TiO2 nanotubes (TiO2 NTs) on the titanium surface by anodization, followed by the incorporation of zinc (Zn) and strontium (Sr) sequentially through a hydrothermal process. Surface characterization confirmed the successful fabrication of Zn and Sr-incorporated TiO2 NTs (Zn-Sr/TiO2) on the titanium surface. The ion release results exhibited the differential release characteristic of Zn and Sr, which meant the early-stage release of Zn and the long-term release of Sr. It was exactly in accord with  the biological process after implantation, laying the basis of staged regulation after implantation. Zn-Sr/TiO2 showed favorable anti-early infection properties both in vitro and in vivo. Its inhibition effect on bacterial biofilm formation was attributed to the resistance against bacteria's initial adhesion and the killing effect on planktonic bacteria. Additionally, the release of Sr could alleviate infection-induced damage via immunoregulation. The biocompatibility and osteogenic activity mediated by M2 macrophage activation were confirmed with in vitro and in vivo studies. Therefore, it exhibited great potential in staged regulation for antibacterial activity in the early stage and the M2 activation-mediated osteogenic activity in the late stage. The staged regulation process was based on the differential release of Zn and Sr to achieve the early antibacterial effect and the long-term immune-induced osteogenic activity, to prevent implant-related infection and achieve better osseointegration. These two kinds of ions played their roles synergistically and complement mutually. This work is expected to provide an innovative idea for realizing sequential regulation after implantation.


Assuntos
Osteogênese , Titânio , Titânio/farmacologia , Antibacterianos/farmacologia , Próteses e Implantes , Osseointegração , Bactérias , Íons , Propriedades de Superfície , Estrôncio/farmacologia
18.
Acta Biomater ; 177: 525-537, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360291

RESUMO

TiO2 nanotube topography, as nanomechanical stimulation, can significantly promote osteogenesis and improve the osteointegration on the interface of implants and bone tissue. However, the underlying mechanism has not been fully elucidated. XB130 is a member of the actin filament-associated protein family and is involved in the regulation of cytoskeleton and tyrosine kinase-mediated signalling as an adaptor protein. Whether XB130 is involved in TiO2 nanotubes-induced osteogenic differentiation and how it functions in mechano-biochemical signalling transduction remain to be elucidated. In this study, the role of XB130 on TiO2 nanotube-induced osteogenesis and mechanotransduction was systematically investigated. TiO2 nanotube topography was fabricated via anodic oxidation and characterized. The osteogenic effect was significantly accelerated by the TiO2 nanotube surface in vitro and vivo. XB130 was significantly upregulated during this process. Moreover, XB130 overexpression significantly promoted osteogenic differentiation, whereas its knockdown inhibited it. Filamentous actin depolymerization could change the expression and distribution of XB130, thus affecting osteogenic differentiation. Mechanistically, XB130 could interact with Src and result in the activation of the downstream PI3K/Akt/GSK-3ß/ß-catenin pathway, which accounts for the regulation of osteogenesis. This study for the first time showed that the enhanced osteogenic effect of TiO2 nanotubes could be partly due to the filamentous actin and XB130 mediated mechano-biochemical signalling transduction, which might provide a reference for guiding the design and modification of prostheses to promote bone regeneration and osseointegration. STATEMENT OF SIGNIFICANCE: TiO2 nanotubes topography can regulate cytoskeletal rearrangement and thus promote osteogenic differentiation of BMSCs. However, how filamentous actin converts mechanical stimulus into biochemical activity remains unclear. XB130 is a member of actin filament-associated protein family and involves in the regulation of tyrosine kinase-mediated signalling. Therefore, we hypothesised that XB130 might bridge the mechano-biochemical signalling transduction during TiO2 nanotubes-induced osteogenic differentiation. For the first time, this study shows that TiO2 nanotubes enhance osteogenesis through filamentous actin and XB130 mediated mechanotransduction, which provides new theoretical basis for guiding the design and modification of prostheses to promote bone regeneration and osseointegration.


Assuntos
Nanotubos , Osteogênese , Actinas , Glicogênio Sintase Quinase 3 beta/farmacologia , Mecanotransdução Celular , Fosfatidilinositol 3-Quinases , Citoesqueleto de Actina , Nanotubos/química , Proteínas Tirosina Quinases , Diferenciação Celular , Titânio/farmacologia , Titânio/química
19.
Sci Rep ; 14(1): 4155, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378776

RESUMO

Low level laser treatment (LLLT) is known for its photobiostimulatory and photobiomodulatory characteristics, which stimulate cell proliferation, increase cellular metabolism, and improve cellular regeneration. The objective of the present research was to assess the possible influence of infrared diode laser irradiation on the behaviour, attachment, and osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) seeded on different types of dental implants. Two distinct types of implants, one subjected to laser surface treatment and the other treated with acid etching, were longitudinally divided into two halves and submerged in six wells culture plates. Both implants were subjected to infrared diode laser treatment, and subsequently, the morphology and attachment of cells were examined using scanning electron microscopy (SEM) after 14 and 21 days. The behaviour of (hPDLSCs) towards two types of implants, when exposed to osteogenic medium and low-level laser therapy (LLLT), was assessed using quantitative real-time polymerase chain reaction to measure the expression of stemness markers and osteogenic markers. The scanning electron microscopy (SEM) demonstrated that the application of infrared diode laser irradiation substantially improved the attachment of cells to both types of implants. The stemness gene markers were significantly down regulated in cells seeded on both surfaces when challenged with osteogenic media in relation to control. At 14 days, early osteogenic markers, were upregulated, while late osteogenic markers, were downregulated in both challenged groups. At the 21-day mark, hPDLSCs seeded on an acid-etched implant exhibited increased expression of all osteogenic markers in response to stimulation with osteogenic media and infra-red diode laser, in contrast to hPDLSCs seeded on a laser surface treated implant under the same conditions. Finally, the findings of our research revealed that when subjected to infrared diode laser, human periodontal ligament stem cells cultured on both types of implants demonstrated improved cellular attachment and differentiation. This suggested that infrared diode laser enhanced the activity of the cells surrounding the implants. Hence, the use of infrared diode laser could be pivotal in improving and expediting the clinical osseointegration process around dental implants.


Assuntos
Implantes Dentários , Osteogênese , Humanos , Osteogênese/genética , Titânio/farmacologia , Lasers Semicondutores , Ligamento Periodontal , Células-Tronco , Diferenciação Celular , Proliferação de Células , Células Cultivadas
20.
ACS Biomater Sci Eng ; 10(3): 1765-1773, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38357873

RESUMO

While titanium dental implants have already been clinically established, ongoing research is continuously being conducted to advance the fields of osseointegration and bacterial resistance, seeking further improvements in these areas. In this study, we introduce an innovative method for treating titanium surfaces within tightly sealed packaging. Specifically, titanium discs, enclosed in surgical-grade packaging, underwent treatment using cold atmospheric plasma (CAP). The surfaces were thoroughly characterized in terms of wettability, crystalline structure, and chemical composition. Hemocompatibility analyses were conducted using blood diluted in sodium citrate (1:9) exposed to titanium discs for 30 min inside a CO2 incubator at 37 °C. Subsequently, various blood parameters were evaluated, including prothrombin time (PT), activated partial thromboplastin time (APTT), and platelet adhesion. Microbiological analyses were also performed using Pseudomonas aeruginosa (ATCC 27853) for 4 h at 37 °C. The treatment with CAP Jet resulted in a reduction in contact angle without causing any changes in the crystalline structure. No statistically significant differences were observed in the blood parameters. The plasma-treated samples exhibited lower PT and APTT values compared to those of the control group. The surfaces treated with CAP Jet showed increased platelet activation, platelet density, and thrombus formation when compared with the untreated samples. Moreover, the treated surfaces demonstrated lower bacterial colony formation compared with other surfaces.


Assuntos
Gases em Plasma , Titânio , Propriedades de Superfície , Titânio/farmacologia , Titânio/química , Gases em Plasma/farmacologia , Gases em Plasma/química , Molhabilidade , Plaquetas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...